4 research outputs found

    Neutron star cooling and the rp process in thermonuclear X-ray bursts

    Get PDF
    When the upper layer of an accreting neutron star experiences a thermonuclear runaway of helium and hydrogen, it exhibits an X-ray burst of a few keV with a cool-down phase of typically 1~minute. When there is a surplus of hydrogen, hydrogen fusion is expected to simmer during that same minute due to the rp process, which consists of rapid proton captures and slow beta-decays of proton-rich isotopes. We have analyzed the high-quality light curves of 1254 X-ray bursts, obtained with the Proportional Counter Array on the Rossi X-ray Timing Explorer between 1996 and 2012, to systematically study the cooling and rp process. This is a follow-up of a study on a selection of 37 bursts from systems that lack hydrogen and show only cooling during the bursts. We find that the bolometric light curves are well described by the combination of a power law and a one-sided Gaussian. The power-law decay index is between 1.3 and 2.1 and similar to that for the 37-bursts sample. There are individual bursters with a narrower range. The Gaussian is detected in half of all bursts, with a typical standard deviation of 50~s and a fluence ranging up to 60% of the total fluence. The Gaussian appears consistent with being due to the rp process. The Gaussian fluence fraction suggests that the layer where the rp process is active is underabundant in H by a factor of at least five with respect to cosmic abundances. Ninety-four percent of all bursts from ultracompact X-ray binaries lack the Gaussian component, and the remaining 6% are marginal detections. This is consistent with a hydrogen deficiency in these binaries. We find no clear correlation between the power law and Gaussian light-curve components.Comment: Accepted for publication in Astronomy & Astrophysics, 17 page

    The Multi-INstrument Burst ARchive (MINBAR)

    Get PDF
    We present the largest sample of type I (thermonuclear) X-ray bursts yet assembled, comprising 7083 bursts from 85 bursting sources. The sample is drawn from observations with Xenon-filled proportional counters on the long-duration satellites RXTE, BeppoSAX, and International Gamma-Ray Astrophysics Laboratory between 1996 February 8 and 2012 May 3. The burst sources were drawn from a comprehensive catalog of 115 burst sources, assembled from earlier catalogs and the literature. We carried out a consistent analysis for each burst light curve (normalized to the relative instrumental effective area) and provide measurements of rise time, peak intensity, burst timescale, and fluence. For bursts observed with the RXTE/PCA and BeppoSAX/Wide Field Camera we also provide time-resolved spectroscopy, including estimates of bolometric peak flux and fluence, and spectral parameters at the peak of the burst. For 950 bursts observed with the PCA from sources with previously detected burst oscillations, we include an analysis of the high time resolution data, providing information on the detectability and amplitude of the oscillations, as well as where in the burst they are found. We also present analysis of 118,848 observations of the burst sources within the sample time frame. We extracted 3–25 keV X-ray spectra from most observations, and (for observations meeting our signal-to-noise criterion) we provide measurements of the flux, spectral colors, and, for selected sources, the position on the color–color diagram, for the best-fit spectral model. We present a description of the sample, a summary of the science investigations completed to date, and suggestions for further studies
    corecore